
Towards Elasticity in Heterogeneous

Edge-dense Environments
Lei Huang, Zhiying Liang, Nikhil Sreekumar, Sumanth Kaushik,

Abhishek Chandra, Jon Weissman

huan1397@umn.edu

mailto:huan1397@umn.edu

Emerging applications enabled by edge
AR/VR

Wearable cognitive assistance

Autonomous vehicle/drone

Interactive gaming … …

Resource-constrained user-end devices

offload

computation

low-latency

response

Edge server

(micro data center)

LAN
Geo-

proximate
locations

Co-located
with 5G

base station

RTT propagation

delay: 1-25ms

Existing edge infrastructures

Public
edge
cloud

Only available at major metropolitan areas
(limited point-of-presence)

Delivered latency performance is less
satisfactory (shown later)

On-
premise
solution

Expensive to maintain private
infrastructures/hardware

Lack of scaling capacity

Answer: No. They are limited by geo-distribution, sub-optimal

performance, high expanses, and scaling capacity.

Are existing edge resources sufficient to support scalable

latency-sensitive computation offloading?

Can volunteer resources come into play?

They are widely/densely distributed with unlimited potential to
scale cost-efficiently under appropriate incentive models

They are natively closer to end-users (usually in the same local
ISP networks) to minimize networking overhead

They are powerful: personal PCs/laptops/devices are equipped
with faster cpu/gpu/storage hardware

Network measurements in Minneapolis-Saint Paul metropolitan area

Existing volunteer computing platforms have contributed

massive compute power for scientific research projects

Can volunteer resources come into play?

They are widely/densely distributed with unlimited potential to
scale cost-efficiently under appropriate incentive models

They are natively closer to end-users (in the same local ISP
networks) to minimize networking overhead

They are powerful: personal PCs/laptops/devices are equipped
with faster cpu/gpu/storage hardware

Volunteer resources are greener complements of existing edge

infrastructures to enable elastic edge computing everywhere

Now challenges…

Heterogeneous client-
to-edge networks

Heterogeneous edge
nodes

Dense and geo-
distributed resource

distribution

Unreliable edge node

Heterogeneous edge-

dense environments

Our objective

Achieve edge elasticity in Heterogeneous edge-dense

environments

Specifically…

In a system with n users and m edge nodes, how to

minimize the average end-to-end latency perceived by all

users in Heterogeneous edge-dense environments

An example

Application: AR-based

cognitive assistance

Continuous

video frames

Lightweight instructions

based on the objects
detected in images

User

User

User

User

User

User

User

User

Edge node

Edge node

Edge node

Edge node

Find the optimal edge node for each user such that

global average latency performance is minimized

Problem formulation

Edge Assignment (EA): A users-to-edge match that assigns each user

𝑢𝑖 (1 ≤ 𝑖 ≤ 𝑛) an edge node 𝑒𝑗 (1 ≤ 𝑗 ≤ 𝑚) to offload computation.

Consider a heterogeneous edge-dense environment with n users and m edge

nodes in a specified area.

𝐸𝐴 = {< 𝑢1, 𝑒𝑗1
>, < 𝑢2, 𝑒𝑗2

>, … , < 𝑢𝑛, 𝑒𝑗𝑛
>}

Objective function:

𝐸𝐴 = {𝑆1, 𝑆2, … , 𝑆𝑚}
equivalent

𝑃 𝐸𝐴 =
1

𝑛
෍

𝑖=1

𝑛

(𝐷𝑝𝑟𝑜𝑝𝑖

𝑗𝑖 + 𝐷𝑡𝑟𝑎𝑛𝑠𝑖
𝑗𝑖 + 𝐷𝑝𝑟𝑜𝑐(𝑒𝑗𝑖

, 𝑆𝑗𝑖
))

From edge node’s view: 𝑺𝒋 denotes the

set of users attached to edge node 𝒆𝒋

𝐸𝐴∈Φ
𝑀𝑖𝑛 𝑃(𝐸𝐴)

End-to-end latency

Propagation

delay

Data transfer

delay
Queuing + Processing delay: determined by i) node

capacity 𝒆𝒋𝒊
 and ii) existing workload 𝑺𝒋𝒊

 on this node
There are totally Φ =
𝑚𝑛 possible EAs.

Problem formulation

𝐸𝐴∈Φ
𝑀𝑖𝑛 𝑃 𝐸𝐴 =

1

𝑛
෍

𝑖=1

𝑛

(𝐷𝑝𝑟𝑜𝑝𝑖

𝑗𝑖 + 𝐷𝑡𝑟𝑎𝑛𝑠𝑖
𝑗𝑖 + 𝐷𝑝𝑟𝑜𝑐(𝑒𝑗𝑖

, 𝑆𝑗𝑖
))

𝐷𝑝𝑟𝑜𝑝 and 𝐷𝑡𝑟𝑎𝑛𝑠 are only subject to client-centric views

𝐷𝑝𝑟𝑜𝑐 is varying under different hardware and resource contention levels

Both users and edge nodes are dynamic with high node churn

Client-centric (distributed) edge selection approach

Lightweight and accurate performance profiling process

Adapt to system dynamics in real-time

Fault tolerance mechanisms to guarantee continuous services

Central manager

Volunteer edge node

Edge service

(application)
Service API

System design

Global edge selection

Application user

Edge monitor

Node monitor

node

status

Edge

discovery

Performance

probing

Local edge

selection

(heuristic)

edge candidate list

Probing API
test

workload
Existing

application

users

probing results

Best_edge_addr

Backup_addrs

+

Edge server list

Application logic

… …

Server_addr

Offload compute to
Failure

monitor

1. Edge discovery

For each user who wants to discover nearby edge resources, we employ a 2-step

approach: (1) Global edge selection followed by a (2) Local edge selection.

Global edge selection: Central manager examines present edge nodes on certain

factors to generate a coarse-grained Candidate edge list.

• Geo-proximity

• Resource utilization
• Network affiliation
• Customized tags

Candidate edge list: A subset of edge nodes that are expected

to provide low latency responses for specific users

TopN: size of the

Candidate edge list

• TopN is an important configurable

system parameter in our design

• Larger TopN value brings higher accuracy and flexibility to the

edge selection process, but also introduce higher overhead

2. Performance probing

After the user obtains the Candidate edge list (with TopN candidates in the list), it

applies a probing approach to predict edge performance during runtime.

Performance probing: Initiated by end-users directly to TopN candidate edge nodes to

collect (1) end-to-end networking metrics, and (2) “what-if” processing performance.

• 𝑫𝒑𝒓𝒐𝒑: RTT propagation delay from the

user to the testing candidate edge node

• 𝑫𝒕𝒓𝒂𝒏𝒔: Data transfer delay limited by the

available bandwidth between the user and
the testing candidate edge node

Easy to test by Ping

Consume currently available

bandwidth and compete
existing networking traffic

2. Performance probing

After the user obtains the Candidate edge list (with TopN candidates in the list), it

applies a probing approach to predict edge performance during runtime.

Performance probing: Initiated by end-users directly to TopN candidate edge nodes to

collect (1) end-to-end networking metrics, and (2) “what-if” processing performance.

“what-if” performance: the processing time measured by invoking a test synthetic

workload to simulate “new-user-join” scenarios.

Test workload: Synthetic workload (compute offload request) based on the same

application logic and compute requirements as the real offloading task

Probing result = propagation delay + “what-if” processing time

3. Local edge selection

After the user has the probing results of all edge candidates, local edge selection policy

is used to sort the Candidate edge list to identify the best candidate.

Local−view Overhead (𝑳𝑶𝒋): Probing result of edge node j. The edge node with the

smallest 𝑳𝑶 is the Best Local Candidate (BLC).

Global−view Overhead (𝑮𝑶𝒋): considering the interference to existing workload on

edge node j.

Local edge selection heuristic:

Performance degradation#existing users on node j

Evaluation

Real-world experiments setup:

• 20 participants in 10-mile radius, Minneapolis-Saint Paul metro area

• 15 users, 5 volunteer edge nodes, 4 AWS Local Zone

Node Processor Processing time –
single video frame

(ms)

V1 IntelR Core i7-9700, 8 cores 24

V2 IntelR Core i7-2720, 6 cores 32

V3 IntelR Core i9-8950HK, 6 cores 31

V4 IntelR Core i5-8250U, 4 cores 45

V5 IntelR Core i5-5250U, 2 cores 49

D6-D9 AWS Local Zone t3.xlarge 30

Cloud AWS ec2 t3.xlarge 30

Edge Elasticity

✓Client-centric approach scales

with load

Baselines: Geo-proximity, resource-aware weighted round-robin, dedicated-edge-

only, closest cloud

Static edge with increasing #users

Emulation Experiments

(a) Resource contention leads to

overloading of local nodes

(b) Inability to identify network

heterogeneity

(c) Performance probing and multi-

node connection lead to low

latency

• 9 volunteer nodes (4 x t2.medium, 4 x

t2.xlarge, 1 x t2.2xlarge), 15 application

users (15 x t2.micro)

• Within 50 miles, RTT ϵ [8, 55] ms

Static users with high edge churn

✓ Correlation between average

performance and edge

resource availability

✓ Effective load balancing leads

to low latency when new

edge nodes join

• Edge node arrivals – Poisson distribution

• Edge node lifetime – Weibull distribution

• 18 edge nodes (8 x t2.medium, 8 x t2.xlarge, 2 x t2.2large)

Conclusion

• Existing edge deployments are not sufficient to support elastic edge

computing everywhere. Volunteer resources can be greener

compliments to existing edge infrastructures.

• We present the notion of Heterogeneous edge-dense environments,

and formulate a latency optimization problem towards edge elasticity.

• We design and implement a client-centric edge selection approach to

achieve a near-optimal performance in dynamic environments.

	Slide 1: Towards Elasticity in Heterogeneous Edge-dense Environments
	Slide 2: Emerging applications enabled by edge
	Slide 3: Existing edge infrastructures
	Slide 4: Can volunteer resources come into play?
	Slide 5: Can volunteer resources come into play?
	Slide 6: Now challenges…
	Slide 7: Our objective
	Slide 8: An example
	Slide 9: Problem formulation
	Slide 10: Problem formulation
	Slide 11: System design
	Slide 12: 1. Edge discovery
	Slide 13: 2. Performance probing
	Slide 14: 2. Performance probing
	Slide 15: 3. Local edge selection
	Slide 16: Evaluation
	Slide 17: Edge Elasticity
	Slide 18: Static edge with increasing #users
	Slide 19: Static users with high edge churn
	Slide 20: Conclusion
	Slide 21

