
HACCS: Heterogeneity-Aware Clustered Client 
Selection for Accelerated Federated Learning

Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Yuanli Wang, and 
Abhishek Chandra

Distributed Computing Systems Group



• Data is increasingly generated in a distributed manner

• ML Applications on mobile phones

• Next word prediction

• Image classification

Motivation

Problem: Transferring data to a central location is 

expensive and has privacy implications



Federated Learning

Learn a shared ML model together 

without uploading private training data

Local 

update

Global 

model



Federated Learning

Local 

update

Global 

model

System Heterogeneity: Different devices have 

different computation resources



Federated Learning

Global 

model

Local 

update

Data Heterogeneity: The dataset of different devices 

have different statistical distributions (non-IID)



Impact of data heterogeneity

Global 

model

Local 

update

Question: What is the impact of non-IID data on 

Federated Learning?



• Partition 100 clients into 10 groups. Each group contains ten clients and will 
be assigned only two classes from MNIST dataset.

• Drop 80 out of 100 devices under 2 different patterns.

• Measure the trained global model’s accuracy on the local test dataset of each 
device.

Distribution Representation

FL is robust to permanent failures, provided the 

data heterogeneity is well represented

randomly pre-select some clients to drop pre-select an entire group of devices to drop



d1 d2 d3 d4 d5 d6 d7 d8

d1 d2 d3

Exploiting data heterogeneity

Idea: Accelerate training by identifying subsets of 
devices with "sufficiently similar" data distributions



System 
Design



Types of IID Violations

Training data at each device drawn from a joint 

distribution 𝑝(𝑥, 𝑦)

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦) 𝑝 𝑦

𝑝 𝑦 Labels have different distributions

𝑝 𝑥 𝑦) Different data generates the same labels



Our Solution: Identify Data Similarity

Device Data 
Distributions

Label 
Distribution

Conditional 
Distribution

Cluster devices 
by their similarity



Preserving 
Privacy

Enforce (ɛ, 0) – Differential Privacy by 

adding noise to summaries



System 
Design



1. Define a distance metric between device summaries 

(Hellinger Distance)

2. Cluster devices based on their similarity (DBSCAN)



Scheduling Decisions

1. Sort devices within 

clusters based on 

performance

2. Assign weights to each 

cluster using a convex 

combination of loss and 

latency reduction

3. Select clusters using 

weighted random 

sampling with 

replacement

Potential Issue: Summaries only consider part of the joint distribution,

which could lead to bias.



• 50 simulated devices

• Delays introduced to simulate network + compute latencies

• Datasets: FEMNIST and CIFAR-10

• Metrics: Time-to-accuracy (TTA) for training a CNN (LeNet)

• Baselines: Random Scheduling, TiFL, and Oort

• Skewed Label Distributions:

Experimental Setup

Prominent digit

(75%)
0 1 2 3 4 5 6 7 8 9

Noise Labels 

(25%)
2/4/3 0/9/6 7/6/1 8/5/4 0/9/5 3/6/8 2/8/7 4/0/9 2/3/4 1/5/6



Model Convergence

23-27% reduction in training time to reach the same level

of accuracy



Degrees of Label Skew

Relative benefit over 

baselines increases as 

skew increases

Skew negatively impacts all 

methods



Differential Privacy

Epsilon parameter can substantially impact clustering 

performance



Bias Considerations

Some bias observed within p(y) clusters, less with p(x|y)



• We explored the impact of data heterogeneity in federated 

learning

• Proposed clustering and scheduling methods for mitigating 

performance degradation

• Observed a 23% to 27% reduction in TTA when leveraging device 

similarity

Conclusion



Questions?

Distributed Computing Systems Group


