HACCS: Heterogeneity-Aware Clustered Client Selection for Accelerated Federated Learning

Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Yuanli Wang, and Abhishek Chandra

Distributed Computing Systems Group

Motivation

- Data is increasingly generated in a distributed manner
- ML Applications on mobile phones
 - Next word prediction
 - Image classification

Problem: Transferring data to a central location is expensive and has privacy implications

Learn a shared ML model together without uploading private training data

System Heterogeneity: Different devices have different computation resources

Data Heterogeneity: The dataset of different devices have different statistical distributions (non-IID)

Distribution Representation

- Partition 100 clients into 10 groups. Each group contains ten clients and will be assigned only two classes from MNIST dataset.
- Drop 80 out of 100 devices under 2 different patterns.
- Measure the trained global model's accuracy on the local test dataset of each device.

FL is robust to permanent failures, provided the data heterogeneity is well represented

Exploiting data heterogeneity

Idea: Accelerate training by identifying subsets of devices with "sufficiently similar" data distributions

System Design

Types of IID Violations

Training data at each device drawn from a joint distribution p(x, y)

$$p(x, y) = p(x | y) p(y)$$

p(y)	Labels have different distributions
p(x y)	Different data generates the same labels

Our Solution: Identify Data Similarity

Preserving Privacy

Enforce $(\varepsilon, 0)$ – Differential Privacy by adding noise to summaries

System Design

- 1. Define a distance metric between device summaries (Hellinger Distance)
- 2. Cluster devices based on their similarity (DBSCAN)

Scheduling Decisions

- 1. Sort devices within clusters based on performance
- 2. Assign weights to each cluster using a convex combination of loss and latency reduction
- 3. Select clusters using weighted random sampling with replacement

Potential Issue: Summaries only consider part of the joint distribution, which could lead to bias.

Experimental Setup

- 50 simulated devices
 - Delays introduced to simulate network + compute latencies
- Datasets: FEMNIST and CIFAR-10
- Metrics: Time-to-accuracy (TTA) for training a CNN (LeNet)
- Baselines: Random Scheduling, TiFL, and Oort
- Skewed Label Distributions:

Model Convergence

23-27% reduction in training time to reach the same level of accuracy

Degrees of Label Skew

Relative benefit over baselines increases as skew increases

Skew negatively impacts all methods

Differential Privacy

Epsilon parameter can substantially impact clustering performance

Bias Considerations

Some bias observed within p(y) clusters, less with p(x|y)

Conclusion

- We explored the impact of data heterogeneity in federated learning
- Proposed clustering and scheduling methods for mitigating performance degradation
- Observed a 23% to 27% reduction in TTA when leveraging device similarity

Questions?

