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Motivation

Data is increasingly generated in a distributed manner

- ML Applications on mobile phones
Next word prediction

- Image classification

Problem: Transferring data to a central location is
expensive and has privacy implications
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System Heterogeneity: Different devices have
different computation resources
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Data Heterogeneity: The dataset of different devices
have different statistical distributions (non-IID)
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Impact of data heterogeneity
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Question: What is the impact of non-IID data on
Federated Learning?




Distribution Representation

e Partition 100 clients into 10 groups. Each group contains ten clients and will
be assigned only two classes from MNIST dataset.

 Drop 80 out of 100 devices under 2 different patterns.

 Measure the trained global model’s accuracy on the local test dataset of each

percentage

device.
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FL is robust to permanent failures, provided the
data heterogeneity is well represented



Exploiting data heterogeneity

Idea: Accelerate training by identifying subsets of
devices with "sufficiently similar" data distributions
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Types of |ID Violations

Training data at each device drawn from a joint
distribution p(x, y)

p(x,y) =plx|y) p(y)

p(y) Labels have different distributions
p(x |y) Different data generates the same labels



Our Solution: Identify Data Similarity
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Preserving

Privacy

Enforce (g, 0) — Differential Privacy by
adding noise to summaries
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Scheduling Decisions

1. Sort devices within
Cluster 1 Cluster 2
clusters based on A A

performance [ \ (

. . Faster
2. Assign weights to each
cluster using a convex Gy
combination of loss and e
latency reduction ¥ Slower @

3. Select clusters using [ Scheduled this Epoch
weighted random
sampling with




Experimental Setup

50 simulated devices

Delays introduced to simulate network + compute latencies
Datasets: FEMNIST and CIFAR-10
Metrics: Time-to-accuracy (TTA) for training a CNN (LeNet)
Baselines: Random Scheduling, TiFL, and Oort
Skewed Label Distributions:
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Model Convergence
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Degrees of Label Skew
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Clustering Accuracy
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Differential Privacy
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Epsilon parameter can substantially impact clustering
performance




Bias Considerations
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Conclusion

«  We explored the impact of data heterogeneity in federated

learning

« Proposed clustering and scheduling methods for mitigating

performance degradation

« Observed a 23% to 27% reduction in TTA when leveraging device

similarity
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