Accelerated Training via Device Similarity in Federated Learning

Yuanli Wang, Joel Wolfrath, Nikhil Sreekumar, Dhruv Kumar, Abhishek Chandra

Learn a shared ML model together without uploading private training data

have different statistical distribution(non-IID)

Question: What is the impact of data heterogeneity on Federated Learning?

Intermittent failure of devices

- Divide MNIST dataset into 100 partitions. Each partition is assigned to one client.
- Randomly select 20 clients from these 100 clients for each training epoch.
- Drop 0, 5, or 15 clients out of 20 clients in each epoch

Federated Learning is robust to intermittent failure of devices

Permanent failure of devices

- Partition 100 clients into 10 groups. Each group contains ten clients and will be assigned only two classes from MNIST dataset.
- Drop 80 out of 100 devices under 2 different patterns.
- Measure the trained global model's accuracy on the local test dataset of each device.

randomly pre-select some clients to drop

pre-select an entire group of devices to drop

FL is robust to permanent failures, as long as the data heterogeneity is well represented

Exploiting data heterogeneity

Idea: Accelerate training by identifying subsets of devices with "sufficiently similar" data distributions

Types of data heterogeneity

Training data at each device drawn from a joint distribution p(x, y)

$$p(x, y) = p(y | x) p(x)$$
$$p(x, y) = p(x | y) p(y)$$

p(x)	Features have different distributions
p(y)	Labels have different distributions
p(x y)	Different data generates the same labels
p(y x)	Given the same data, labels might differ

Our Solution: Identify Data Similarity

Method #1: Class Label Distribution

device1 and device2 similar

Method #2: Conditional Data Distribution

device1 and device2 similar

Method #3: Loss based Selection

 $Loss_{device1} \approx Loss_{device2}$

Hypothesis: device1 and device2 similar

Trade-off between data size and privacy

Data summary method	Data Size sent from each device	Privacy
Random	None	Complete Privacy
Distribution of Class Labels	$\Theta(m_i)$	Partial
Conditional Data Distribution	$\Theta(s_im_i)$	Partial
Empirical Loss on Global Model	Θ(1)	Stronger Privacy

Training Pipeline: One Epoch

Experimental Setup

- 20 devices (10 slow and 10 fast)
 - 2 for each class label. 1 slow and 1 fast
- Dataset: MNIST Handwriting
- Distribution
 - Each device data has one prominent digit and noise from 3 other digits
 - Same distribution ratio maintained across training and testing

Prominent digit	0	1	2	3	4	5	6	7	8	9
device speed	Slow									
device speed	Fast									

Evaluation

Conclusion

- Explore the impact of data heterogeneity in federated learning
- Propose 3 methods for evaluating the similarity of device data
- 46% to 58% reduction of training speed via device similarity

Future work

- Fault tolerance
- Profile more system heterogeneity factors
- Explore other data summaries